(Juestic	n	Answer	Marks	Guida	nce
1	(i)		y = (x + 5)(x + 2)(2x - 3) or	2	M1 for $y = (x + 5)(x + 2)(x - 3/2)$ or	allow 'f(x) =' instead of ' y = '
			y = 2(x + 5)(x + 2)(x - 3/2)		(x + 5)(x + 2)(2x - 3) with no equation or (x + 5)(x + 2)(2x - 3) = 0 but M0 for $y = (x + 5)(x + 2)(2x - 3) - 30$ or (x + 5)(x + 2)(2x - 3) = 30 etc	ignore further work towards (ii) but do not award marks for (i) in (ii)
				[2]		
1	(ii)		correct expansion of a pair of their linear two- term factors ft isw	M1	ft their factors from (i); need not be simplified; may be seen in a grid	allow only first M1 for expansion if their (i) has an extra -30 etc
			correct expansion of the correct linear and quadratic factors and completion to given answer $y = 2x^3 + 11x^2 - x - 30$	M1	must be working for this step before given answer or for direct expansion of all three factors, allow M2 for	do not award 2^{nd} mark if only had ($x - 3/2$) in (i) and suddenly doubles RHS at this stage
					$2x^{3} + 10x^{2} + 4x^{2} - 3x^{2} + 20x - 15x - 6x - 30$ oe (M1 if one error) or M1M0 for a correct direct expansion of (x + 5)(x + 2)(x - 3/2)	condone omission of ' y =' or inclusion of '= 0' for this second mark (some cands have already lost a mark for that in (i))
					condone lack of brackets if used as if they were there	allow marks if this work has been done in part (i) – mark the copy of part (i) that appears below the image for part (ii)
				[2]		

(Juestio	n	Answer	Marks	Guida	ince
1	(iii)		ruled line drawn through $(-2, 0)$ and $(0, 10)$ and long enough to intersect curve at least twice	B1	tolerance half a small square on grid at $(-2, 0)$ and $(0, 10)$	insert BP on spare copy of graph if not used, to indicate seen – this is included as part of image, so scroll down to see it
			-5.3 to -5.4 and 1.8 to 1.9	B2 B1 for one correct ignore the solution –2 but allow B1 for both values correct but one extra or for wrong 'coordinate' form such as (1.8, –5.3)		accept in coordinate form ignoring any y coordinates given;
				[3]		
1	(iv)		$2x^3 + 11x^2 - x - 30 = 5x + 10$	M1	for equating curve and line; correct eqns only	annotate this question if partially correct
			$2x^3 + 11x^2 - 6x - 40 \ [= 0]$	M1	for rearrangement to zero, condoning one error	
	division by $(x + 2)$ and correctly obtaining $2x^2$ M + $x - 20$		M1	or showing that $(x + 2)(2x^2 + 7x - 20) = 2x^3$ + 1 $x^2 - 6x - 40$, with supporting working		
			substitution into quadratic formula or for completing the square used as far as $x + \frac{7}{4} = \frac{209}{16}$ oe	M1	condone one error eg <i>a</i> used as 1 not 2, or one error in the formula, using given $2x^2 + 7x - 20 = 0$	
			$[x=]\frac{-7\pm\sqrt{209}}{4}$ oe isw	A1	dependent only on 4 th M1	
				[5]		

2	(i	y = 2x + 3 drawn accurately	M1	at least as far as intersecting curve twice	ruled straight line and within 2 mm of (2, 7) and (-1, 1)
		(-1.6 to -1.7, -0.2 to -0.3) (2.1 to 2.2, 7.2 to 7.4)	B1 B1	intersections may be in form $x =, y =$	
			[3]		if marking by parts and you see work relevant to (ii), put a yellow line here and in (ii) to alert you to look
2	(ii	$\frac{1}{x-2} = 2x+3$	M1	or attempt at elimination of <i>x</i> by rearrangement and substitution	may be seen in (i) – allow marks; the part (i) work appears at the foot of the image for (ii) so show marks there rather than in (i)
		1 = (2x + 3)(x - 2)	M1	condone lack of brackets	implies first M1 if that step not seen
		$1 = 2x^2 - x - 6$ oe	A1	for correct expansion; need not be simplified; NB A0 for $2x^2 - x - 7 = 0$ without expansion seen [given answer]	implies second M1 if that step not seen after $\frac{1}{x-2} = 2x+3$ seen
		$\frac{1 \pm \sqrt{1^2 - 4 \times 2 \times -7}}{2 \times 2} \text{ oe}$ $\frac{1 \pm \sqrt{57}}{4} \text{ isw}$	M1 A1	use of formula or completing square on given equation, with at most one error is eg coordinates; after completing square, accept $\frac{1}{4} \pm \sqrt{\frac{57}{16}}$ or	completing square attempt must reach at least $[2](x - a)^2 = b$ or $(2x - c)^2 = d$ stage oe with at most one error
			[5]	better	

2	(iii	$\frac{1}{x-2} = -x+k$ and attempt at rearrangement	M1		
		$x^{2} - (k+2)x + 2k + 1 = 0$	M1	for simplifying and rearranging to zero; condone one error; collection of <i>x</i> terms with bracket not required	eg M1 bod for $x^2 - (k+2)x + 2k$ or M1 for $x^2 - 2kx + 2k + 1 = 0$
		$b^2 - 4ac = 0$ oe seen or used	M1		= 0 may not be seen, but may be implied by their final values of k
		[k =] 0 or 4 as final answer, both required	A1	SC1 for 0 and 4 found if 3 rd M1 not earned (may or may not have earned first two Ms)	eg obtained graphically or using calculus and/or final answer given as a range
			[4]		8-

3	(i)	(-1, 6) (0,1) (1,-2) (2,-3) (3,-2) (4, 1) (5,6) seen plotted	B2	or for a curve within 2 mm of these points; B1 for 3 correct plots or for at least 3 of the pairs of values seen eg in table	use overlay; scroll down to spare copy of graph to see if used [or click 'fit height'
					also allow B1 for $(2\pm\sqrt{3}, 0)$ and
					(2, -3) seen or plotted and curve not through other correct points
		smooth curve through all 7 points	B1 dep	dep on correct points; tolerance 2 mm;	condone some feathering/ doubling (deleted work still may show in scans); curve should not be flat-bottomed or go to a point at min. or curve back in at top:
		(0.3 to 0.5, -0.3 to -0.5) and	B2	may be given in form $x =, y =$	
		(2.5 to 2.7, -2.5 to -2.7) and (4, 1)		B1 for two intersections correct or for all the	
			[5]		
3	(ii)	$\frac{1}{1} = x^2 - 4x + 1$	M1		
		$ x-3 1 = (x-3)(x^2 - 4x + 1) $	M 1	condone omission of brackets only if used correctly afterwards, with at most one error;	condone omission of '=1' for this M1 only if it reappears
					allow for terms expanded correctly with at most one error
		at least one further correct interim step with $=1$ or $=0$, as appropriate, leading to given answer, which must be stated correctly	A1	there may also be a previous step of expansion of terms without an equation, eg in grid	NB mark method not answer - given answer is $x^3 - 7x^2 + 13x - 4 = 0$
				if M0, allow SC1 for correct division of given cubic by quadratic to gain $(x - 3)$ with remainder -1 , or vice-versa	
			[3]		

C	Question		er	Marks	Guidance		
3	3 (iii) quadratic factor is		B2	found by division or inspection;			
			$x^2 - 3x + 1$		allow M1 for division by $x - 4$ as far as		
					$x^3 - 4x^2$ in the working, or for inspection		
				with two terms correct			
			substitution into quadratic formula or for completing the square used as far as $(x - 3)^2 - 5$	M1	condone one error	no ft from a wrong 'factor';	
			$\frac{(x-\frac{1}{2})^2 - \frac{1}{4}}{\frac{3\pm\sqrt{5}}{2}}$ oe	A2	A1 if one error in final numerical expression, but only if roots are real	isw factors	
				[5]			

4	(i) $x + 4x^2 + 24x + 31 = 10$ oe	M1	for subst of <i>x</i> or <i>y</i> or subtraction to eliminate variable; condone one error;	
	$4x^2 + 25x + 21 \ [= 0]$	M1	for collection of terms and rearrangement to zero; condone one error;	or $4y^2 - 105y + 671$ [= 0]; eg condone spurious $y = 4x^2 + 25x + 21$ as one error (and then count as eligible for 3^{rd} M1);
	(4x + 21)(x + 1)	M1	for factors giving at least two terms of their quadratic correct or for subst into formula with no more than two errors [dependent on attempt to rearrange to zero];	or $(y - 11)(4y - 61)$; [for full use of completing square with no more than two errors allow 2nd and 3rd M1 s simultaneously];
	x = -1 or $-21/4$ oe isw	A1	or A1 for (-1, 11) and A1 for (-21/4, 61/4) oe	from formula: accept $x = -1$ or $-42/8$ oe isw
	y = 11 or 61/4 oe isw	A1		
4	(ii) $4(x+3)^2 - 5$ isw	4	B1 for $a = 4$, B1 for $b = 3$, B2 for $c = -5$ or M1 for $31 - 4 \times \text{their } b^2$ soi or for $-5/4$ or for $31/4$ – their b^2 soi	eg an answer of $(x + 3)^2 - \frac{5}{4}$ earns B0 B1 M1 ; 1(2x + 6) ² - 5 earns B0 B0 B2 ; 4(earns first B1 ; condone omission of square symbol
4	(iii)(A) $x = -3$ or ft (-their b) from (ii)	1		0 for just -3 or ft; 0 for $x = -3$, $y = -5$ or ft
4	(iii)(B) –5 or ft their c from (ii)	1	allow $y = -5$ or ft	0 for just $(-3, -5)$; bod 1 for $x = -3$ stated then $y = -5$ or ft

5	(i)	(2x-3)(x+1)	M2	M1 for factors with one sign error or giving two terms correct allow M1 for $2(x - 1.5)(x + 1)$ with no better factors seen
		x = 3/2 and -1 obtained	B1	or ft their factors
5	(ii)	graph of quadratic the correct way up and crossing both axes	B1	
		crossing x-axis only at $3/2$ and -1 or ft from their roots in (i), or their factors if roots not given	B1	for $x = 3/2$ condone 1 and 2 marked on axis and crossing roughly halfway between; intns must be shown labelled or worked out nearby
		crossing <i>y</i> -axis at -3	B1	
5	(iii)	use of $b^2 - 4ac$ with numbers subst (condone one error in substitution) (may be in quadratic formula)	M1	may be in formula or $(x - 2.5)^2 = 6.25 - 10$ or $(x - 2.5)^2 + 3.75 = 0$ oe (condone one error)
		25 – 40 < 0 or –15 obtained	A1	or $\sqrt{-15}$ seen in formula or $(x - 2.5)^2 = -3.75$ oe or $x = 2.5 \pm \sqrt{-3.75}$ oe

5	(iv)	$2x^2 - x - 3 = x^2 - 5x + 10 \text{ o.e.}$	M1	attempt at eliminating y by subst or subtraction
		$x^2 + 4x - 13 = 0$	M1	or $(x + 2)^2 = 17$; for rearranging to form $ax^2 + bx + c$ [= 0] or to completing square form condone one error for each of 2 nd and 3 rd M1s
		use of quad. formula on resulting eqn (do not allow for original quadratics used)	M1	or $x+2=\pm\sqrt{17}$ o.e. 2nd and 3rd M1s may be earned for good attempt at completing square as far as roots obtained
		$-2\pm\sqrt{17}$ cao	A1	

6		y = 2x + 3 drawn on graph	M1		
		x = 0.2 to 0.4 and -1.7 to -1.9	A2	1 each; condone coords; must have	
				line drawn	3
	ii	$1 = 2x^2 + 3x$	M1	for multiplying by <i>x</i> correctly	
		$2x^2 + 3x - 1 = 0$	M1	for correctly rearranging to zero (may	
				be earned first) or suitable step re	
				completing square if they go on	
		attempt at formula or completing	M 1	ft, but no ft for factorising	
		square			
		$-3 \pm \sqrt{17}$	12	A 1 for one colm	_
		x =	AZ	A1 for one som	5
	iii	branch through (1.3).	1	and approaching $v = 2$ from above	
		branch through (-1,1), approaching		3,	
		y = 2 from below	1	and extending below <i>x</i> axis	2
	iv	-1 and $\frac{1}{2}$ or ft intersection of their	2	1 each; may be found algebraically;	
		curve and line [tolerance 1 mm]		ignore y coords.	2